首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoelectric Characteristics in MBE-Grown HgCdTe-Based Superlattices
Authors:S Velicu  CH Grein  J Zhao  Y Chang  S-Y An  A Yadav  K Pipe  W Clark
Affiliation:(1) EPIR Technologies, Inc., 590 Territorial Dr., Unit B, Bolingbrook, IL 60440, USA;(2) Microphysics Laboratory, University of Illinois at Chicago, Chicago, IL 60607, USA;(3) Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109-2125, USA
Abstract:We present a study on the thermoelectric properties of n-type Hg0.75Cd0.25 Te/Hg0.7Cd0.3Te superlattices (SLs). This material system was chosen because HgCdTe is the primary material used in high-performance infrared imaging applications. HgCdTe-based devices can be directly grown on Hg1−x Cd x Te/Hg1−y Cd y Te SL coolers using advanced growth methods such as molecular-beam epitaxy (MBE), making the monolithic integration of infrared sensors and thermoelectric elements possible. Also, the thermoelectric figure of merit ZT for Hg0.75Cd0.25Te/Hg0.7Cd0.3Te SLs is predicted to reach values of 2.09, more than two times greater than that achieved in the best thermoelectric devices based on bulk Bi2Te3. This large ZT is due to the unique and superior electrical and thermal properties of the HgCdTe system, which has not yet been experimentally explored in any great depth as a thermoelectric material. We used a Riber 32P MBE system equipped with a Hg valved cell, reflection high-energy electron diffraction, infrared pyrometer and in situ spectroscopic ellipsometry to grow the thermoelectric structures. MBE was chosen as a growth technique since it allows for the lowest growth temperature compared with other methods, which limits interdiffusion at the interfaces, thereby allowing for a precise control over electrical and thermal properties. Thermal devices were fabricated using standard photolithography and etching techniques. Thermal properties were evaluated using a differential technique. A thermal conductivity of 0.82 ± 0.07 W/m K and a Seebeck coefficient of 811 ± 150 μV/K were measured. Using a measured value of 0.017 Ω cm for the resistivity, an upper bound ZT of 1.4 is estimated. An erratum to this article can be found at
Keywords:Thermoelectric  HgCdTe  superlattice            ZT            molecular-beam epitaxy  Seebeck coefficient  thermal conductivity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号