首页 | 本学科首页   官方微博 | 高级检索  
     

基于分子动力学模拟的改进混合蛙跳算法
引用本文:张潇丹,胡峰,赵力,邹采荣. 基于分子动力学模拟的改进混合蛙跳算法[J]. 数据采集与处理, 2012, 27(3): 327-332
作者姓名:张潇丹  胡峰  赵力  邹采荣
作者单位:东南大学水声信号处理教育部重点实验室,南京,210096
摘    要:针对基本的混合蛙跳算法(Shuffled frog leaping algorithm,SFLA)后期搜索速度变慢,容易陷入局部最优解的缺点,借鉴分子动力学(Molecular dynamics,MD)模拟的思想,提出一种基于分子动力学模拟的改进的混合蛙跳算法。该算法将种群中的粒子等效成分子,并提出一种新的分子间作用力计算方法来代替两体间经典的Lennard-Jones作用力计算方法,利用Velocity-Verlet算法和高斯变异算子代替基本混合蛙跳算法的更新策略,有效地平衡了种群的多样性和搜索的高效性。高维多峰函数测试的结果表明,基于分子动力学模拟的改进混合蛙跳算法能提高算法后期跳出局部极值的能力,全局寻优能力明显优于基本的混合蛙跳算法。

关 键 词:分子动力学  混合蛙跳算法  分子间作用力  Velocity-Verlet算法  高斯变异
收稿时间:2011-01-13
修稿时间:2012-04-21

Improved Shuffled Frog Leaping Algorithm Based On Molecular Dynamics Simulations
zhangxiaodan,hufeng,zhaoli and zoucairong. Improved Shuffled Frog Leaping Algorithm Based On Molecular Dynamics Simulations[J]. Journal of Data Acquisition & Processing, 2012, 27(3): 327-332
Authors:zhangxiaodan  hufeng  zhaoli  zoucairong
Affiliation:(Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University,Nanjing,210096,China)
Abstract:To overcome the defects of shuffled frog leaping algorithm(SFLA) such as slow searching speed in the late evolution and easily trapping into local extremum,an improved shuffled frog leaping algorithm(ISFLA) based on the basic ideas of molecular dynamics(MD) simulations is presented with the population being regarded as a molecular system.A new intermolecular force is proposed instead of the classic two-body Lennard-Jones force and Velocity-Verlet algorithm and Gaussian mutation are adopted to replace the original SFLA update strategy.So the population diversity and search efficiency can be effectively balanced.Test results on high-dimensional and multi-modal optimization problems indicate that ISFLA improves the capacity of escaping from local maximum and the global searching performance is superior to SFLA.
Keywords:molecular dynamics(MD)  shuffled frog leaping algorithm(SFLA)  intermolecular force  velocity-verlet algorithm  Gaussian mutation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号