首页 | 本学科首页   官方微博 | 高级检索  
     


Gender-related differences in susceptibility of A/J mouse to benzo[a]pyrene-induced pulmonary and forestomach tumorigenesis
Authors:SV Singh  PJ Benson  X Hu  A Pal  H Xia  SK Srivastava  S Awasthi  HA Zaren  JL Orchard  YC Awasthi
Affiliation:US Army Medical Department Center and School, University of Florida, Gainesville 32611-8300, USA.
Abstract:A commercial patient dose verification system utilizing non-invasive metal oxide semiconductor field effect transistor (MOSFET) dosimeters originally designed for radiotherapy applications has been evaluated for use at diagnostic energy levels. The system features multiple dosimeters that may be used to monitor entrance or exit skin dose and intracavity doses in phantoms in real time. We have characterized both the standard MOSFET dosimeter designed for radiotherapy dose verification and a newly developed "high sensitivity" MOSFET dosimeter designed for lower dose measurements. The sensitivity, linearity, angular response, post-exposure response, and physical characteristics were evaluated. The average sensitivity (free in air, including backscatter) of the radiotherapy MOSFET dosimeters ranged from 3.55 x 10(4) mV per C kg(-1) (9.2 mV R(-1)) to 4.87 x 10(4) mV per C kg(-1) (12.6 mV R(-1)) depending on the energy of the x-ray field. The sensitivity of the "high sensitivity" MOSFET dosimeters ranged from 1.15 x 10(5) mV per C kg(-1) (29.7 mV R(-1)) to 1.38 x 10(5) mV per C kg(-1) (35.7 mV R(-1)) depending on the energy of the x-ray field. The high sensitivity dosimeters demonstrated excellent linearity at high energies (90 and 120 kVp) and acceptable linearity at lower energies (60 kVp). The angular response was significant for free-in-air exposures, as illustrated by the sensitivity differences between the two sides of the dosimeter, but was excellent for measurements within a tissue equivalent cylinder. The post-exposure drift response is a complicated but reproducible function of time. Real-time monitoring requires little if any corrections for the post-exposure drift response. The MOSFET dosimeter system brings some unique capabilities to diagnostic radiology dosimetry including small size, real-time capabilities, nondestructive measurement, good linearity, and a predictable angular response.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号