首页 | 本学科首页   官方微博 | 高级检索  
     


Stability of anthocyanins in frozen and freeze-dried raspberries during long-term storage: in relation to glass transition
Authors:Syamaladevi Roopesh M  Sablani Shyam S  Tang Juming  Powers Joseph  Swanson Barry G
Affiliation:Biological Systems Engineering Dept., Washington State Univ., P.O Box 646120, Pullman, WA 99164-6120, USA.
Abstract:Abstract: Anthocyanins, natural plant pigments in the flavonoid group, are responsible for the red color and some of the nutraceutical benefits of raspberries. This study explores anthocyanin degradation in frozen and freeze‐dried raspberries during storage in relation to glass transition temperatures. Frozen raspberries were stored at ?80, ?35, and ?20 °C, while freeze‐dried raspberries were stored at selected water activity (aw) values ranging from 0.05 to 0.75 at room temperature (23 °C) for more than a year. The characteristic glass transition temperatures (Tg) of raspberries with high water content and glass transition temperature (Tg) of raspberries with small water content were determined using a differential scanning calorimeter. The pH differential method was used to determine the quantity of anthocyanins in frozen and freeze‐dried raspberries at selected time intervals. The total anthocyanins in raspberries fluctuated during 378 d of storage at ?20 and ?35, and ?80 °C. Anthocyanin degradation in freeze‐dried raspberries ranged from 27% to 32% and 78% to 89% at aw values of 0.05 to 0.07 and 0.11 to 0.43, respectively, after 1 y. Anthocyanins were not detectable in freeze‐dried raspberries stored at aw values of 0.53 to 0.75 after 270 d. First order and Weibull equations were used to fit the anthocyanin degradation in freeze‐dried raspberries. The 1st‐order rate constant (k) of anthocyanin degradation ranged from 0.003 to 0.023 days?1 at the selected water activities. Significant anthocyanin degradation occurred in both the glassy and rubbery states of freeze‐dried raspberries during long‐term storage. However, the rate of anthocyanin degradation in freeze‐dried raspberries stored in the glassy state was significantly smaller than the rate of anthocyanin degradation in the rubbery state.
Keywords:glass transition  maximally freeze‐concentrated matrix  water activity  Weibull equation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号