首页 | 本学科首页   官方微博 | 高级检索  
     


A 1-D non-isothermal dynamic model for the thermal decomposition of a gibbsite particle
Authors:Amirpiran Amiri  Andrey V Bekker  Gordon D Ingram  Iztok Livk  Nicoleta E Maynard
Affiliation:1. Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;2. Parker Cooperative Research Centre for Integrated Hydrometallurgy Solutions, CSIRO Process Science and Engineering, Australia
Abstract:A 1-D mathematical model describing the thermal decomposition, or calcination, of a single gibbsite particle to alumina has been developed and validated against literature data. A dynamic, spatially distributed, mass and energy balance model enables the prediction of the evolution of chemical composition and temperature as a function of radial position inside a particle. In the thermal decomposition of gibbsite, water vapour is formed and the internal water vapour pressure plays a significant role in determining the rate of gibbsite dehydration. A thermal decomposition rate equation, developed by closely matching experimental data reported previously in the literature, assumes a reaction order of 1 with respect to gibbsite concentration, and an order of −1 with respect to water vapour pressure. Estimated values of the transformation kinetic parameters were k0 = 2.5 × 1013 mol/(m3 s) for the pre-exponential factor, and Ea = 131 kJ/mol for the activation energy. Using these kinetic parameters, the gibbsite particle model is solved numerically to predict the evolution of the internal water vapour pressure, temperature and gibbsite concentration. The model prediction was shown to be very sensitive to the values of heat transfer coefficient, effective diffusivity, particle size and external pressure, but relatively less sensitive to the mass transfer coefficient and particle thermal conductivity. The predicted profile of the water vapour pressure inside the particle helps explain some phenomena observed in practice, including particle breakage and formation of a boehmite phase.
Keywords:Gibbsite calcination  Distributed dehydration model  Water vapour pressure  Alumina production  Particle breakage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号