首页 | 本学科首页   官方微博 | 高级检索  
     


A flexible technique for calibrating relative position and orientation of two cameras with no-overlapping FOV
Authors:Meng Xie  Zhenzhong WeiGuangjun Zhang  Xinguo Wei
Affiliation:Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
Abstract:We propose a flexible new method to calibrate the relative position and orientation relationship of two cameras with no-overlapping field of view (FOV), which are called relative pose parameters in this paper. The objective of this method is to unify the local coordinate frames of the two cameras to be under one global coordinate frame. Additionally we design a flexible target composed of two short 1D bars with equally placed light spots and one long linking pole to assist the calibration. The target is adjustable according to the actual position and orientation of the two cameras, based on the principle that the two 1D bars can be shot clearly at the same time by their corresponding cameras, which will largely increase the calibration accuracy. The proposed approach consists of two steps. Firstly we use the invariant constraints on the angle and distance between the two short 1D bars to give a rough estimation on the relative pose parameters of the two cameras, then we use more restrictions on the invariant distances between light spots on the two 1D bars respectively to refine the estimation on both the relative pose parameters and the structure parameter of the targets. This technique offers a significant flexibility and tight space advantage compared to other calibration methods applying extremely large 2D or 3D targets for wide view calibration, which are inefficient in some conditions. And equally important, this approach still obtains acceptable calibration accuracy. Result of the experimental calibration shows that the system calibrated by this method reaches an accuracy of 0.108 mm when measuring a distance section of 1040 mm.
Keywords:Wide view calibration  Coordinates unification  Visual measurement  No-overlapping FOV
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号