Abstract: | We introduce a new nonlinear filter for signal and image restoration, the hybrid order statistic (HOS) filter. Because it exploits both rank- and spatial-order information, the HOS realizes the advantages of nonlinear filters in edge preservation and reduction of impulsive noise components while retaining the ability of the linear filter to suppress Gaussian noise. We show that the HOS filter exhibits improved performance over both the linear Wiener and the nonlinear L filters in reducing mean-squared error in the presence of contaminated Gaussian noise. In many cases it also performs favorably compared with the Ll and rank-conditioned rank selection filters. |