首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic modeling and simulation for the rigid flexible coupling system with a non-tip mass
Authors:LI Cui-chun  MENG Xiu-yun and LIU Zao-zhen
Affiliation:Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China
Abstract:The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate system, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are established. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can't be offered. First, the mass at non-tip position is incorporated into the continuous dynamic equations of the system by use of the Dirac function and the Heaviside function. Then, based on the conclusions of orthogonalization about the normal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-order model established in this paper, which indicates the dynamic responses of the rigid flexible coupling system with large overall motion accurately. The results also show that the mass has a softening effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.
Keywords:non-inertial coordinate system  rigid flexible coupling  dynamic stiffening  mass at non-tip position  constrained mode
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报(英文版)》浏览原始摘要信息
点击此处可从《北京理工大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号