首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机算法在熔盐相图数据库智能化中的若干应用
引用本文:包新华,陆文聪,陈念贻. 支持向量机算法在熔盐相图数据库智能化中的若干应用[J]. 计算机与应用化学, 2002, 19(6): 723-725
作者姓名:包新华  陆文聪  陈念贻
作者单位:上海大学理学院化学系计算机化学研究室,上海,200436
基金项目:国家自然科学基金委和美国福特公司联合资助(9716214)
摘    要:支持向量机(SVM)方法可被用于熔盐系未知相图的计算机预报,将已知的二元卤化物系相图数据作为训练集,体系组成的离子半径和电负性作为特征量,用SVM方法可预报中间化合物的形成与否,熔化类型(同分熔化还是异分熔化)和估计中间化合物的熔点。本文报道了M2M′F4型的中间化合物的形成判据,M3M′Cl6型化合物的熔化类型的判据以及MM′X4型中间化合物熔点计算的回归方程式。用“留一法”检验所得的数学模型并将结果与传统的模式识别方法(Fisher法和KNN)进行了比较,结果表明:SVM的预报准确率比Fisher法和KNN法都高。因此,SVM方法有望成为计算机预报未知相图的有力工具。

关 键 词:支持向量机算法 熔盐 相图 数据库 智能化 计算机预报 中间化合物 原子参数
文章编号:1001-4160(2002)06-723-725
修稿时间:2002-09-16

Support vector machine applied to intelligent database of phase diagrams of molten salt systems
BAO Xin-hua,LU Wen-cong,CHEN Nian-yi. Support vector machine applied to intelligent database of phase diagrams of molten salt systems[J]. Computers and Applied Chemistry, 2002, 19(6): 723-725
Authors:BAO Xin-hua  LU Wen-cong  CHEN Nian-yi
Abstract:In this work, SVM (support vector machine) method was used for the computerized prediction of unknown phase diagrams of molten salt systems. Using the data of known phase diagrams of binary halide systems as training set, and some atomic parameters related to ionic radi-i, electronegativity as features, SVM method was applied to predict the formability, melting type and melting points of intermediate compounds. The criteria for prediction such as formation of intermediate compound of M2M'F4 type, the melting type of M3M'Cl6 type compounds and the melting points of MM'X4 type compounds were obtained. And the results of the cross-validation experiment comparing SVM with two other pat-tern recognition methods, Fisher method and KNN method, indicated that the predictive ability of SVM was better than that of Fisher method or KNN method.
Keywords:support vector machine  phase diagrams of molten salt systems  computerized prediction  intermediate compound  atomic parameters
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号