首页 | 本学科首页   官方微博 | 高级检索  
     

混合优化的贝叶斯网络结构学习
引用本文:许丽佳,黄建国,王厚军,龙兵. 混合优化的贝叶斯网络结构学习[J]. 计算机辅助设计与图形学学报, 2009, 21(5)
作者姓名:许丽佳  黄建国  王厚军  龙兵
作者单位:电子科技大学自动化学院,成都,610054;四川农业大学信息与工程技术学院,雅安,625014;电子科技大学自动化学院,成都,610054
基金项目:国防基础科研项目,国家自然科学基金,高等学校博士学科点专项科研基金,电子科技大学青年科技基金 
摘    要:从大型数据库中学习网络结构一直是贝叶斯网络学习的难点之一.针对此问题提出了一种混合算法,将粒子群优化法简单且全局寻优能力强的特点,以及遗传算法良好的并行计算能力进行有效的结合,以增加学习的精度和效率.最后以经典的Asia,Cancer网络为实例,并与文中算法进行比较,验证了该算法的有效性.

关 键 词:粒子群优化法  遗传算法  贝叶斯网络

Hybrid Optimized Algorithm for Learning Bayesian Network Structure
Xu Lijia,Huang Jianguo,Wang Houjun,Long Bing. Hybrid Optimized Algorithm for Learning Bayesian Network Structure[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5)
Authors:Xu Lijia  Huang Jianguo  Wang Houjun  Long Bing
Affiliation:School of Automation Engineering;University of Electronic Science and Technology of China;Chengdu 610054;School of Information & Engineering Technology;Sichuan Agriculture University;Yaan 625014
Abstract:Learning structure from large databases is one of the difficulties of learning Bayesian Networks. To cope with this problem,a new hybrid algorithm is proposed. By integrating PSO (particle swarm optimization) and GA effectively,it owns not only simply and strong global optimization of PSO,but also favorable parallel computing capability of GA. Therefore,the learning accuracy and efficiency can be increased. Finally the proposed algorithm is compared with other algorithms in typical Bayesian networks such as...
Keywords:
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号