首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation and design of MIM nanoresonators for color filter applications
Authors:Saswatee Banerjee
Affiliation:Advanced Materials Research Laboratory of Sumitomo Chemical Co. Ltd, Japan
Abstract:We simulated metal–insulator–metal (MIM) nanoresonator structures that can be realized by sandwiching an insulator layer between two metal grating layers with subwavelength periods and heights. Simulation results indicate that it is possible to use relatively low refractive index polymeric materials as the insulator layer and such MIM structures can function as color filters with reasonably narrow bandwidths in transmission mode. Such color filters being superior in performance might find application in liquid crystal display devices replacing the conventional color filters. Simulations suggest that development of plasmonic modes at the metal–insulator interfaces might be responsible for the filter‐like transmission behavior of such structures. The transmission peaks can be tuned by changing the heights of the two grating layers and the refractive index of the insulator layer. Transmission peak is red‐shifted as insulator layer refractive index increases. Simulations were carried out using a home‐grown, monochromatic version of recursive convolution finite‐difference time‐domain method.
Keywords:MIM nanoresonators  subwavelength structure  color filter  liquid crystal display  recursive convolution finite‐difference time‐domain method  surface plasmon resonance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号