首页 | 本学科首页   官方微博 | 高级检索  
     

基于SURE估计的图像块稀疏收缩去噪算法
引用本文:崔琛,沙正虎,李莉,王粒宾. 基于SURE估计的图像块稀疏收缩去噪算法[J]. 计算机工程, 2012, 38(23): 231-235
作者姓名:崔琛  沙正虎  李莉  王粒宾
作者单位:1. 安徽省电子制约技术重点实验室,合肥230037;电子工程学院信息工程系,合肥230037
2. 电子工程学院信息工程系,合肥,230037
3. 中国人民解放军61541部队,北京,100094
摘    要:针对图像过完备稀疏收缩去噪的阈值选取问题,根据图像的常规稀疏模型,提出一种基于SURE无偏估计的自适应阈值选择算法。在一阶可导收缩函数的基础上,推导阈值选择的优化目标函数,证明该函数是关于阈值的凸函数,利用黄金分割法搜索其全局最小值。仿真结果表明,该算法选择的阈值接近峰值信噪比-阈值曲线的极大值点,将该算法应用于图像的块稀疏模型,可取得比常规稀疏模型更好的去噪效果。

关 键 词:稀疏表示  块稀疏模型  收缩去  通用阈值  Minimaxi阈值  SURE无偏估计
收稿时间:2012-01-11

Image Block Sparsity Shrinkage Denoising Algorithm Based on SURE Estimation
CUI Chen , SHA Zheng-hu , LI Li , WANG Li-bin. Image Block Sparsity Shrinkage Denoising Algorithm Based on SURE Estimation[J]. Computer Engineering, 2012, 38(23): 231-235
Authors:CUI Chen    SHA Zheng-hu    LI Li    WANG Li-bin
Affiliation:(1. Anhui Province Key Laboratory of Electronic Restriction Technology, Hefei 230037, China; 2. Department of Information Engineering, Electronic Engineering Institute, Hefei 230037, China; 3. Unit 61541 of PLA, Beijing 100094, China)
Abstract:Aimming at the choice of threshold under over-compeleted sparese shrinkage denoising of image, a new adaptive threshold selection algorithm is investigated over image normal sparse model based on SURE agonic estimation. Based on the one order derivable shrinkage function, the optimal objective function about threshold selection is derived and it is shown to be convex function on threshold, and then its global minimum is searched by golden section method. Simulation result shows that the choice of threshold is closer to the maxima of PSNR-threshold curve. The new algorithm is extended over image block sparisity model, and a better denoising result than normal sparse model is gotten.
Keywords:sparse representation  block sparsity model  shrinkage denoising  general threshold  Minimaxi threshold  SURE agonic estimation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号