首页 | 本学科首页   官方微博 | 高级检索  
     

正则化方法在鱼眼相机检校中的应用
引用本文:李崇辉,原玉磊,郑 勇,张 超. 正则化方法在鱼眼相机检校中的应用[J]. 信息工程大学学报, 2013, 14(5): 575-579
作者姓名:李崇辉  原玉磊  郑 勇  张 超
作者单位:1.信息工程大学,河南 郑州 450001;2.国防科学技术大学 计算机学院,湖南 长沙 410073
基金项目:国家自然科学基金资助项目(41174025)
摘    要:由于能对大范围内的目标同时成像,鱼眼相机已经在全方位视觉和摄影测量等领域得到了广泛的应用.使用鱼眼相机之前需要对其进行检校,然而鱼眼相机参数之间存在较强的复共线性,致使参数解容易受到观测误差的影响.为了解决这一问题,提出了利用正则化方法来进行鱼眼相机检校,阐述了Tikhonov正则化方法的基本原理,介绍了L曲线法确定正则化参数的原理,最后利用实验数据对最小二乘解和正则化解的准确度和精度进行了比较.实验结果表明正则化方法能够有效地减弱检校方程的病态性,能够显著提高鱼眼相机参数解的稳定性.

关 键 词:鱼眼相机  检校  Tikhonov正则化  L曲线

Regularization Method in the Fish Eye Camera Calibration
LI Chong-hui YUAN Yu-lei ZHENG Yong,ZHANG Chao. Regularization Method in the Fish Eye Camera Calibration[J]. , 2013, 14(5): 575-579
Authors:LI Chong-hui YUAN Yu-lei ZHENG Yong  ZHANG Chao
Affiliation:1. Information Engineering University, Zhengzhou 450001, China; 2. School of Computer, National University of Defense Technology, Changsha 410073, China)
Abstract:Fish-eye camera has been widely used in Omni-directional vision, photogrammetry and other fields for its simultaneous wide-range-field imaging. It should be calibrated before being used, but strong muhi-colinearity exists between the camera parameters, so parameter solutions are vulnerably affected by observation error. In order to solve this problem, the regularization method is proposed in fish-eye camera calibration. The basic principle of Tikhonov regularization method is expounded, and the L-curve method is introduced to determine the regularization parameters, finally solutions of least square method and regularization method are compared in terms of accuracy and precision. Experiment results indicate that the proposed regularization method can effectively weaken the ill-posed problem of calibration equation, so it can significantly improve the stability of fish-eye camera parameters.
Keywords:fish-eye camera  calibration  Tikhonov regularization  L curve
本文献已被 维普 等数据库收录!
点击此处可从《信息工程大学学报》浏览原始摘要信息
点击此处可从《信息工程大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号