首页 | 本学科首页   官方微博 | 高级检索  
     


Design and calibration of 3D printed soft deformation sensors for soft actuator control
Abstract:Soft actuators made from compliant materials are superior to conventional rigid robots in terms of flexibility, adaptability and safety. However, an inherent drawback of soft actuator is the low actuation precision. Implementing closed loop control is a possible solution, but the soft actuator shape can hardly be measured directly by commercially available sensors, which either are too stiff for integration or cause performance degradation of the actuator. Although 3D printing has been applied to print bendable sensors from conductive materials, they either have larger stiffness than the soft actuator or are made from specially designed materials that are difficult to reproduce. In this study, easily accessible commercial soft conductive material is applied to directly 3D print soft sensors on soft actuators. Different configurations of the printed sensors are studied to investigate how the sensor design affects the performance. The best sensor configuration is selected to provide shape feedback using its changing resistance during deformation. Compared with a commercial flexible bending sensor, the printed sensor has less influences on the soft actuator performance and enjoys higher shape estimation accuracy. Closed loop shape control of the actuator using feedback from the 3D printed sensor is then designed, implemented and compared with the control results using image feedback. A gripper consisting of three individually controlled soft actuators demonstrates the applications of the soft sensor.
Keywords:Closed loop control  Soft actuator  3D printing  Soft sensors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号