首页 | 本学科首页   官方微博 | 高级检索  
     


A fault detection and diagnosis strategy of VAV air-conditioning systems for improved energy and control performances
Affiliation:1. Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;2. Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA
Abstract:This paper presents the results of a site survey study on the faults in variable air volume (VAV) terminals and an automatic fault detection and diagnosis (FDD) strategy for VAV air-conditioning systems using a hybrid approach. The site survey study was conducted in a commercial building. 20.9% VAV terminals were ineffective and 10 main faults were identified in the VAV air-conditioning systems. The FDD strategy adopts a hybrid approach utilizing expert rules, performance indexes and statistical process control models to address these faults. Supported by a pattern recognition method, expert rules and performance indexes based on system physical characteristics are adopted to detect 9 of the 10 faults. Two pattern recognition indexes are introduced for fault isolation to overcome the difficulty in differentiating damper sticking and hysteresis from improper controller tuning. A principal component analysis (PCA)-based method is developed to detect VAV terminal flow sensor biases and to reconstruct the faulty sensors. The FDD strategy is tested and validated on typical VAV air-conditioning systems involving multiple faults both in simulation and in situ tests.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号