首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial evolution mechanism of MgAl2O4/MgAl2O4 joints bonded with lanthanum glass
Affiliation:1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;2. Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
Abstract:The La2O3-SiO2-B2O3 (LSB) glass filler with high softening temperature was first used to join MgAl2O4 ceramic. An interfacial layer composed of Al2O3 was formed due to the solubility difference of MgO and Al2O3 in the LSB glass filler. As a result, the addition of Al2O3 into the LSB glass filler caused the increase of interfacial layer thickness. On the contrary, the addition of MgO into the LSB glass filler led to the decrease of interfacial layer thickness. When the adding content of MgO was 6 wt%, the interfacial layer disappeared and completely amorphous brazing seam was obtained. The in-line transmittance of joints decreased with the increase of the thickness of interfacial layer. The optimal in-line transmittance of joint bonded with La2O3-SiO2-B2O3-MgO (LSB6M) glass filler reached 82.9% at 1000 nm. Meanwhile, the average flexural strength of joints was about 196.2 MPa, which was equal to the strength of MgAl2O4 substrate.
Keywords:Transparent spinel  Joining  Glass filler  Interfacial layer  In-line transmittance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号