首页 | 本学科首页   官方微博 | 高级检索  
     

基于voting集成的智能电能表故障多分类方法
引用本文:肖宇,黄瑞,刘谋海,刘小平,袁明,谢雄,高云鹏. 基于voting集成的智能电能表故障多分类方法[J]. 电测与仪表, 2024, 61(7): 197-203
作者姓名:肖宇  黄瑞  刘谋海  刘小平  袁明  谢雄  高云鹏
作者单位:国网湖南省电力有限公司,国网湖南省电力有限公司,国网湖南省电力有限公司,国网湖南省电力有限公司,湖南大学,国网湖南省电力有限公司,湖南大学
基金项目:国家电网公司科技资助项目(5216AG20000D)
摘    要:为提升智能电能表故障准确分类能力,助力维护人员迅速排除故障,本文提出基于投票法voting集成的智能电能表故障多分类方法。首先针对实际智能电能表故障数据进行编码预处理,基于皮尔逊系数法筛选智能电能表故障分类关键影响因素,结合SMOTE算法解决数据类别不平衡问题,由此建立模型所需数据集,再通过投票法进行模型融合,结合粒子群PSO确定各基模型的权重,据此构建基于XGBT+KNN+NB模型的智能电能表故障多分类方法。实测实验结果表明:本文提出方法能有效实现智能电能表的故障快速准确分类,与现有方法相比,在智能电能表的故障分类精确率、召回率及F1-Score均有明显提升。

关 键 词:智能电能表  故障分类  voting集成  粒子群寻优  多分类
收稿时间:2021-09-24
修稿时间:2021-10-12

Multi-classification method of smart meter fault based on voting integration
Xiao Yu,Huang Rui,Liu Mouhai,Liu Xiaoping,Yuan Ming,Xie Xiong and Gao Yunpeng. Multi-classification method of smart meter fault based on voting integration[J]. Electrical Measurement & Instrumentation, 2024, 61(7): 197-203
Authors:Xiao Yu  Huang Rui  Liu Mouhai  Liu Xiaoping  Yuan Ming  Xie Xiong  Gao Yunpeng
Affiliation:State Grid Hunan Electric Power Co,Ltd,State Grid Hunan Electric Power Co,Ltd,State Grid Hunan Electric Power Co,Ltd,State Grid Hunan Electric Power Co,Ltd,Hunan University,State Grid Hunan Electric Power Co,Ltd,Hunan University
Abstract:In order to improve the ability to accurately classify faults of smart meters and help maintainers to quickly troubleshoot faults, this paper proposes a multi-classification method for smart meter faults based on voting integration. First, perform coding preprocessing for the actual fault data of smart meters, screen the key influencing factors of fault classification of smart meters based on the Pearson coefficient method, and combine the SMOTE algorithm to solve the problem of data category imbalance, thereby establishing the data set required for the model, and then voting The method is used for model fusion, combined with particle swarm PSO to determine the weight of each base model, and based on this, a smart meter fault multi-classification method based on the XGBT+KNN+NB model is constructed. The actual test results show that the method proposed in this paper can effectively realize the rapid and accurate classification of the faults of the smart electric energy meter. Compared with the existing methods, the fault classification accuracy, the recall rate and the F1-Score of the intelligent electric energy meter have been significantly improved..
Keywords:Smart  meter, Fault  classification, voting  integration, Particle  swarm optimization, Multiple  classification
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号