首页 | 本学科首页   官方微博 | 高级检索  
     

基于非侵入式负荷监测的反窃电预警方法
引用本文:黄荣国,都正周,杨艺宁,王聪. 基于非侵入式负荷监测的反窃电预警方法[J]. 电测与仪表, 2024, 61(7): 211-217
作者姓名:黄荣国  都正周  杨艺宁  王聪
作者单位:国网浙江省电力有限公司电力科学研究院,河南许继仪表有限公司,中国电力科学研究院,中国电力科学研究院
基金项目:国家电网总部科技项目“反窃电及稽查监控关键技术研究”资助JLB17201800232
摘    要:为了有效检测用户是否存在窃电行为,文中对用户用电行为展开分析,提出一种基于非侵入式负荷监测的反窃电预警方法。在该方法中,首先利用负荷事件检测、特征提取以及meanshift聚类方法,获得用户各个负荷特征、类别等情况,建立负荷类别对比库以及窃电概率预测模型;其次,根据所建立的窃电行为模型,通过对窃电后的负荷投切事件、使用时长、能耗等进行概率估计,并采用贝叶斯理论对用户用电行为进行推断,实现窃电监测。最后,在实际的电能表数据上采用文中方法进行测试,文中方法能够为反窃电提供数据支持,进而为新一代智能电表反窃电应用奠定基础。

关 键 词:反窃电  负荷辨识  贝叶斯  非侵入式
收稿时间:2021-03-19
修稿时间:2021-04-06

Electricity theft alarming method based on non-intrusive load monitoring
HUANG Rongguo,DU Zhengzhou,YANG Yining and WANG Cong. Electricity theft alarming method based on non-intrusive load monitoring[J]. Electrical Measurement & Instrumentation, 2024, 61(7): 211-217
Authors:HUANG Rongguo  DU Zhengzhou  YANG Yining  WANG Cong
Affiliation:Electric Power Research Institute of State Grid Zhejiang Electric Power Corporation,Henan XJ Metering Co,Ltd,China Electric Power Research Institute,China Electric Power Research Institute
Abstract:In order to achieve electricity theft detection, this paper proposes a methd through the analysis of electricity consumption behavior of users, which is based on non-instrusive load monitring. In this method, the commonly-used process is carried out, including the load detection, feature extraction and meanshift clustering, in order to obtain the features of each type load inner the home. Thus, the dataset of load is built which consists of the non-electrical features, such as the time point of load turing on and off, the length of load works, and so on. Thereby, the electricity theft detection model can be built for load cluster and probability prediction. Meanwhile, according to the electrical electricity theft detection model, the predition is performed by the information, including the load event, the length of load work and the energy consumption. The bayes theory is then introduced to infer whether its electrical consumption behavior is normal or not. Finally, the experiments are carried out by using the real information from the smart meter. The results show that the proposed method can provide the basis and support for the electriity theft detection.
Keywords:anti-electricity  stealing, load  identification, bayes, non-instrusive
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号