首页 | 本学科首页   官方微博 | 高级检索  
     

基于马尔科夫链改进灰色神经网络的水质预测模型
引用本文:薛鹏松,冯民权,邢肖鹏. 基于马尔科夫链改进灰色神经网络的水质预测模型[J]. 武汉大学学报(工学版), 2012, 45(3): 319-324
作者姓名:薛鹏松  冯民权  邢肖鹏
作者单位:西安理工大学西北水资源与环境生态教育部重点实验室,陕西西安,710048
基金项目:山西省水利厅科技计划基金项目
摘    要:根据汾河运城段的实际情况,应用改进灰色神经网络对水质进行预测.在数据处理以及关联度分析的基础上,选取关联度较高的氨氮、挥发酚、水温、BOD5及COD作为灰色神经网络的输入节点.应用灰色神经网络对水质进行预测,再用马尔科夫修正误差残值,可使修正值更加接近实测值.灰色神经网络的相对误差为68.44%~4.69%,改进灰色神经网络将相对误差为41.96%~2.23%,可见改进神经网络的预测精度更高.改进灰色神经网络模型,结合了灰色神经网络和马尔科夫的优点,提高了预测的精度,并以汾河河津大桥监测断面的水质预测为例,验证了该方法的可行性.

关 键 词:灰色神经网络  马尔科夫链  水质预测  汾河运城段

Water quality prediction model based on Markov chain improving gray neural network
XUE Pengsong,FENG Minquan,XING Xiaopeng. Water quality prediction model based on Markov chain improving gray neural network[J]. Engineering Journal of Wuhan University, 2012, 45(3): 319-324
Authors:XUE Pengsong  FENG Minquan  XING Xiaopeng
Affiliation:(Key Laboratory of Northwest Water Resources and Environmental Ecology of Education Ministry,Xi’an University of Technology,Xi’an 710048,China)
Abstract:The improved gray neural network is applied to predict water quality according to actual situation of Fenhe river.On the basis of data processing and correlation analysis,NH3-N,volatile phenol,water temperature,BOD5 and COD are chosen as the input nodes of gray neural network model.The gray neural network is applied to predict water quality and then Markov chain is used to modify the residual series for the sample of bigger error.The correction result is close to the measured value.Relative error is 68.44%4.69% based on gray neural network.Relative error was 41.96%-2.23% based on improved gray neural network,the correction result is close to the measured value.Improved gray neural network model,combined the advantages of gray neural network and Markov chain.The results indicate that the method can improve the prediction accuracy.This prediction model was identified by taking water quality prediction into the Hejin bridge monitoring section.
Keywords:gray neural network  Markov chain  water quality prediction  Yuncheng section of Fenhe river
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号