首页 | 本学科首页   官方微博 | 高级检索  
     


Natural liquid organic hydrogen carrier with low dehydrogenation energy: A first principles study
Affiliation:1. Research School of Chemistry, The Australian National University, Canberra, Australia;2. Energy Change Institute, The Australian National University, Canberra, Australia;3. School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, People’s Republic of China;1. Department of Physical Chemistry, University of Rostock, 18059 Rostock, Germany;2. Faculty of Interdisciplinary Research, Competence Centre CALOR, University of Rostock, 18059 Rostock, Germany;3. Chemical Department, Samara State Technical University, 443100, Russia;1. HySA-Infrastructure, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom 2520, South Africa;2. Computational Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius;3. Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;1. Forschungszentrum Jülich, “Helmholtz-Institute Erlangen-Nürnberg for Renewable Energies” (IEK 11), Egerlandstr. 3, 91058, Erlangen, Germany;2. Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058, Erlangen, Germany;1. Laboratorio de Química Teórica y Computacional, Departamento de Química, Facultad Experimental de Ciencias, Universidad Del Zulia, Maracaibo, Venezuela;2. Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Barranquilla, Colombia;3. Laboratorio de Óptica y Procesamiento de Imágenes, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Turbaco, Colombia;4. Laboratorio de Química Inorgánica, Departamento de Química, Facultad Experimental de Ciencias, Universidad Del Zulia, Maracaibo, Venezuela
Abstract:Liquid organic hydrogen carriers (LOHCs) represent a promising approach for hydrogen storage due to their favorable properties including stability and compatibility with the existing infrastructure. However, fossil-based LOHC molecules are not green or sustainable. Here we examined the possibility of using norbelladine and trisphaeridine, two representative structures of Amaryllidaceae alkaloids, as the LOHCs from the sustainable and renewable sources of natural products. Our first principles thermodynamics calculations reveal low reversibility for the reaction of norbelladine to/from perhydro-norbelladine because of the existence of stabler isomers of perhydro-norbelladine. On the other hand, trisphaeridine is found promising due to its high hydrogen storage capacity (~5.9 wt%) and favorable energetics. Dehydrogenation of perhydro-trisphaeridine has an average standard enthalpy change of ~54 kJ/mol-H2, similar to that of perhydro-N-ethylcarbazole, a typical LOHC known for its low dehydrogenation enthalpy. This work is a first exploration of Amaryllidaceae alkaloids for hydrogen storage and the results demonstrate, more generally, the potential of bio-based molecules as a new sustainable resource for future large-scale hydrogen storage.
Keywords:Liquid organic hydrogen carrier  Amaryllidaceae alkaloids  First principles  Trisphaeridine  Norbelladine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号