首页 | 本学科首页   官方微博 | 高级检索  
     


Vibrational nonequilibrium and reaction heat effect in diluted hydrogen-oxygen mixtures behind reflected shock waves at 1000 < T < 1300 K
Affiliation:1. Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-52425, Jülich, Germany;2. Faculty of Education and Arts, Nord University, Mørkvedtråkket 30, N-8049, Bodø, Norway;1. Département de Chimie, Biochimie et Physique and Institut de Recherche sur l''Hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada;2. Département de Chimie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada;1. Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, 621907, China;2. Institute of Materials, China Academy of Engineering Physics, Mianyang, 621900, China;3. Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China;1. Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China;2. State Key Lab for Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 430074, Wuhan, China;1. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China;2. Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, China;3. School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, China
Abstract:Vibrationally nonequilibrium model of kinetics in the reacting mixture H2 + O2 + Ar behind the reflected shock wave is formulated as a non-isothermal process occurring adiabatically at a constant volume. The model takes into account the vibrational nonequilibrium for the starting (primary) H2 and O2 molecules, as well as the molecular intermediates HO2, OH, O2(1Δ), and the main reaction product H2O. Calculation results that simulate experimental data on the ignition induction time measurements in the hydrogen oxygen mixtures behind reflected shock waves by the methods of absorption spectroscopy (monitoring the OH(2Π) radical) and emission spectroscopy (monitoring the OH*(2Σ+) radical) at temperatures of 1000 < T < 1300 K and pressures p < 3 atm are compared with experimental data and analyzed. It has been shown that the vibrational nonequilibrium determines the mechanism and rate of the process as a whole. The self-heating effect in diluted reacting mixtures at concentrations of the reacting additive ≤5% is demonstrated and discussed.
Keywords:Shock wave  Heat effect  Chemical kinetics  Vibrational relaxation  Electronical excitation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号