首页 | 本学科首页   官方微博 | 高级检索  
     


Facile fabrication of comb-like porous NiCo2O4 nanoneedles on Ni foam as an advanced electrode for high-performance supercapacitor
Affiliation:1. Department of Chemical Engineering, Le Quy Don Technical University, Hanoi, 100000, Viet Nam;2. Research Center of Advanced Materials and Applications, Institute of Architecture, Construction, Urban and Technology, Hanoi Architectural University, Hanoi, 100000, Viet Nam;3. Department of Physics, Open Training Institute, Hanoi Architectural University, Hanoi, 100000, Viet Nam
Abstract:It is very desirable to develop the high-performance supercapacitors to meet the rapidly growing demands for energy-autonomous operation and miniaturization of devices. Herein, comb-like porous NiCo2O4 nanoneedles on the three-dimension (3D) nickel foam (NF) have been successfully synthesized through a facile pulsed laser ablation (PLA) approach without any post-treatments and surfactant (denoted as NiCo2O4-PLA). The influence of working solution during the fabricated process on the properties of NiCo2O4-PLA has been demonstrated in detail in terms of the crystalline structure, specific surface area, morphology, and electrochemical performance. Benefiting from the large specific surface (261.4 m2 g−1), abundant pores, and highly conductive scaffold, the NiCo2O4-PLA binder-free electrode exhibits an outstanding specific capacitance (1650 F g−1 at a current density of 1 A g−1) and eminent cycling performance (91.78% retention after a 12,000-cycle test at a current density of 10 A g−1) compared with the control samples. The assembled asymmetric device (NiCo2O4-PLA//AC-ASCs) delivers the high specific capacitance of 126.9 F g−1 at the current density of 1 A g−1, the large energy density of 56.7 Wh kg−1 at a power density of 756 W kg−1, and the low internal resistance. The attractive results strongly prove that it is an ideal candidate for advanced supercapacitor application.
Keywords:Supercapacitor  Nickel foam  Binder-free electrode
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号