首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization and catalytic behavior of hydrotalcite-derived Ni–Al catalysts for methane decomposition
Affiliation:1. Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran;2. School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran;3. Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran;4. Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;5. Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia
Abstract:A series of Ni catalysts were prepared from Ni–Al hydrotalcite-like compounds (HTlcs) by varying the Ni/Al molar ratio (1–4) and calcination temperature (773–1173 K) of HTlcs. The catalysts were reduced with H2 at 1073 K and tested for CH4 decomposition at 773–923 K on a thermal gravimeter. Various techniques including N2 physical adsorption, XRD, H2-TPR, XPS, HAADF-STEM, TEM, and Raman were applied to characterize the catalysts and the as-produced carbon. The characterizations show that calcination of Ni–Al HTlcs leads to Ni(Al)O solid solution and minor NiO and/or NiAl2O4 spinel may be formed depending on the Ni/Al ratio and calcination temperature; upon reduction at 1073 K, most nickel species are reduced to metallic Ni. In CH4 decomposition, carbon yield shows a volcano-type dependence on the Ni content with the optimum Ni/Al ratio equal to 3. On the other hand, carbon yield is affected by the calcination temperature of the Ni3Al HTlcs to a small extent. Carbon yield is also significantly affected by the reaction temperature, which decreases remarkably with a rise of temperature to 923 K. TEM and Raman indicate that fish-bone carbon nanofibers are formed at 773–823 K, whereas multi-walled carbon nanotubes are formed at 873–923 K.
Keywords:Catalytic methane decomposition  Hydrogen  Carbon nanomaterials  Nickel catalyst  Hydrotalcite-like compounds
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号