首页 | 本学科首页   官方微博 | 高级检索  
     


Ultra-high capacity hydrogen storage of B6Be2 and B8Be2 clusters
Affiliation:1. Laboratory of Condensed Matter and Interdisciplinary Sciences, Physics Department, Faculty of Sciences, Mohammed V University in Rabat, Morocco;2. École Supérieure de Technologie de Laâyoune, Ibn Zohr University, Morocco;3. Hassan II Academy of Science and Technology, Rabat, Morocco;1. Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China;2. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
Abstract:The B6Be2 and B8Be2 clusters, adopting fascinating inverse sandwich-like geometries, were recently predicted with quantum chemical calculations. Both systems exhibit the high stability and double aromaticity with 4σ/6π or 6σ/6π delocalized electrons. The hydrogen storage of two systems is studied in the present paper. Our calculations show that B6Be2 and B8Be2 clusters have the ultra-high capacity hydrogen storage, each Be site can bound up with seven H2 molecules, corresponding to a gravimetric density of 25.3 wt percentage (wt%) for B6Be2 and 21.1 wt% for B8Be2, respectively, which far exceeds the target (5.5 wt%) proposed by the US department of energy (DOE) in 2017. The average absorption energies of 0.10–0.45 eV/H2 for B6Be2 and 0.11–0.50 eV/H2 for B8Be2 at the wB97XD level suggest that both systems are ideal for reversible hydrogen storage and release. The reversibility of H2 molecules on B6Be2 and B8Be2 complexes are faithfully demonstrated with the Born-Oppenheimer molecular dynamics (BOMD) simulations. The Be-doped boron nanostructure is a promising candidate for ultra-high hydrogen storage materials.
Keywords:Boron-based nanocluster  Inverse sandwich  Hydrogen storage  First-principle calculations  Density functional theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号