首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据融合IGA-RGRNN低阶煤制甲烷产量预测模型
引用本文:荣德生,胡举爽,赵君君,杨学鹏. 基于数据融合IGA-RGRNN低阶煤制甲烷产量预测模型[J]. 电源学报, 2018, 16(1): 178-184
作者姓名:荣德生  胡举爽  赵君君  杨学鹏
作者单位:辽宁工程技术大学电气与控制工程学院,辽宁工程技术大学电气与控制工程学院,辽宁工程技术大学电气与控制工程学院,辽宁工程技术大学电气与控制工程学院
基金项目:国家重点基础研究发展计划(973计划)
摘    要:为了提高智能系统的准确性与快速性,针对多传感器网络,提出了一种以融合技术为数据基础与改进遗传算法-广义旋转回归神经网络IGA-RGRNN(improved genetic algorithm and rotated generalized regression neural network)算法相结合的预测模型。利用RGRNN强大的非线性随机变量的处理能力,把预测理论引入改进遗传算法循环中,将该模型应用于低阶煤制甲烷产量预测过程,并对预测模型效果进行实验验证。实验结果表明,基于数据融合IGA-RGRNN低阶煤制甲烷产量预测模型的相对误差最大值为2.99%,相对误差最小值为0.25%,相对误差平均值为1.76%,相较其他预测模型具有泛化能力更强和预测精度更高的优势,为低阶煤制甲烷产量预测提供一种新的途径。

关 键 词:RGRNN网络;IGA算法;信息融合;甲烷产量;预测模型
收稿时间:2015-12-31
修稿时间:2018-01-15

Prediction Model of Methane Yield from Low-rank Coal Based on Data Fusion and IGA-RGRNN Algorithm
RONG Desheng,HU Jushuang,ZHAO Junjun and YANG Xuepeng. Prediction Model of Methane Yield from Low-rank Coal Based on Data Fusion and IGA-RGRNN Algorithm[J]. Journal of Power Supply, 2018, 16(1): 178-184
Authors:RONG Desheng  HU Jushuang  ZHAO Junjun  YANG Xuepeng
Affiliation:Liaoning Technical University electrical control engineering institute,Liaoning Technical University electrical control engineering institute,Liaoning Technical University electrical control engineering institute,Liaoning Technical University electrical control engineering institute
Abstract:For multi-sensor network, a prediction model based on data fusion and united the improved genetic algorithm and rotated general regression neural network (IGA-RGRNN) was proposed, both the accuracy and the rapidity of intelligent systems was raised. With using RGRNN''s strong processing capability to handle nonlinear random variables and introducing prediction theory to the improved genetic algorithm, the proposed model is applied to the prediction process of methane production from low rank coal, and its effect is verified by experiments. Experimental results show that the maximum relative error of the prediction model based on data fusion IGA-GRNN was 2.99%,the minimum relative error was 0.25%, and the average relative error was 1.76%.Compared with other predictive models, the proposed model has advantages of stronger generalization ability and higher prediction accuracy, and it will lead to a new approach for the prediction of methane production from low rank coal.
Keywords:rotated generalized regression neural network (RGRNN)  improved genetic algorithm  data fusion  meth-ane yield  prediction model
本文献已被 CNKI 等数据库收录!
点击此处可从《电源学报》浏览原始摘要信息
点击此处可从《电源学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号