首页 | 本学科首页   官方微博 | 高级检索  
     


Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogen‐Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction
Authors:Lu‐Ting Song  Zhen‐Yu Wu  Fei Zhou  Hai‐Wei Liang  Zi‐You Yu  Shu‐Hong Yu
Affiliation:Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, University of Science and Technology of China, Hefei, China
Abstract:It is urgent to develop new kinds of low‐cost and high‐performance nonprecious metal (NPM) catalysts as alternatives to Pt‐based catalysts for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries, which have been proved to be efficient to meet the challenge of increase of global energy demand and CO2 emissions. Here, an economical and sustainable method is developed for the synthesis of Fe, N codoped carbon nanofibers (Fe–N/CNFs) aerogels as efficient NPM catalysts for ORR via a mild template‐directed hydrothermal carbonization (HTC) process, where cost‐effective biomass‐derived d (+)‐glucosamine hydrochloride and ferrous gluconate are used as precursors and recyclable ultrathin tellurium nanowires are used as templates. The prepared Fe/N‐CNFs catalysts display outstanding ORR activity, i.e., onset potential of 0.88 V and half‐wave potential of 0.78 V versus reversible hydrogen electrode in an alkaline medium, which is highly comparable to that of commercial Pt/C (20 wt% Pt) catalyst. Furthermore, the Fe/N‐CNFs catalysts exhibit superior long‐term stability and better tolerance to the methanol crossover effect than the Pt/C catalyst in both alkaline and acidic electrolytes. This work suggests the great promise of developing new families of NPM ORR catalysts by the economical and sustainable HTC process.
Keywords:aerogels  carbon nanofibers  electrocatalysts  hydrothermal carbonization  oxygen reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号