首页 | 本学科首页   官方微博 | 高级检索  
     

结合亮度分级和笔画检测的彩色图像文本提取
引用本文:刘琼,周慧灿,王耀南. 结合亮度分级和笔画检测的彩色图像文本提取[J]. 计算机工程与应用, 2008, 44(18): 157-159. DOI: 10.3778/j.issn.1002-8331.2008.18.049
作者姓名:刘琼  周慧灿  王耀南
作者单位:湖南文理学院计算机科学与技术系,湖南常德,415000;湖南大学电气与信息工程学院,长沙,410082
摘    要:提出一种彩色图像下的文本提取方法,该方法对彩色图像在R、G、B三个颜色层分别进行亮度分级,以避开传统颜色聚类方法的聚类数目选择问题,降低图像复杂度;考虑到文字笔画的显著方向性特征,并且通常具有稳定的颜色,利用方向梯度算法进行文本粗定位;然后进一步利用多类SVM分类器实现文本区域精确判别。新方法限制了候选区域的种类,从而降低了SVM分类器的训练难度,具有较高的准确性和鲁棒性。

关 键 词:亮度分级  笔画检测  文本定位  方向梯度  多类SVM分类器
收稿时间:2007-12-20
修稿时间:2008-4-23 

Method for text location in color image based on brightness grading and stroke detection
LIU Qiong,ZHOU Hui-can,WANG Yao-nan. Method for text location in color image based on brightness grading and stroke detection[J]. Computer Engineering and Applications, 2008, 44(18): 157-159. DOI: 10.3778/j.issn.1002-8331.2008.18.049
Authors:LIU Qiong  ZHOU Hui-can  WANG Yao-nan
Affiliation:1.Department of Computer Science,Hunan University of Art and Science,Changde,Hunan 415000,China 2.College of Electrical and Information Engineering,Hunan University,Changsha 410082,China
Abstract:A method for unsupervised text location in color image is presented.The method makes a brightness grading in R、G、B color layers of a color image separately to avoid choosing the number of clustering in common methods witch based on color clustering,and decreases the complexity of the background.Considering obvious directionality and color stability of text strokes,a rough text location is proceeded according algorithm of orientation gradient.And then,precisely discriminating is implemented with a multi-class SVM classifier.The new method constrains the types of candidate areas and depressed the difficulty of training SVM classifier.Those make the new method higher accuracy and robustness.
Keywords:brightness grade  stroke detection  text location  orientation gradient  multi-class SVM classifier
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号