首页 | 本学科首页   官方微博 | 高级检索  
     


Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity
Authors:Tanaka Takuma  Kaneko Takeshi  Aoyagi Toshio
Affiliation:Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. ttakuma@mbs.med.kyoto-u.ac.jp
Abstract:Recently multineuronal recording has allowed us to observe patterned firings, synchronization, oscillation, and global state transitions in the recurrent networks of central nervous systems. We propose a learning algorithm based on the process of information maximization in a recurrent network, which we call recurrent infomax (RI). RI maximizes information retention and thereby minimizes information loss through time in a network. We find that feeding in external inputs consisting of information obtained from photographs of natural scenes into an RI-based model of a recurrent network results in the appearance of Gabor-like selectivity quite similar to that existing in simple cells of the primary visual cortex. We find that without external input, this network exhibits cell assembly-like and synfire chain-like spontaneous activity as well as a critical neuronal avalanche. In addition, we find that RI embeds externally input temporal firing patterns to the network so that it spontaneously reproduces these patterns after learning. RI provides a simple framework to explain a wide range of phenomena observed in in vivo and in vitro neuronal networks, and it will provide a novel understanding of experimental results for multineuronal activity and plasticity from an information-theoretic point of view.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号