首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species
Authors:EC Hatchikian  N Forget  A Bernadac  D Alazard  B Ollivier
Affiliation:Unité de Bioénergétique et Ingéniérie des Protéines, CNRS, Marseille, France.
Abstract:Various sulphate-reducing bacteria differing in the number of genes encoding hydrogenase were shown to ferment lactate in coculture with Methanospirillum hungatei, in the absence of sulphate. The efficiency of interspecies H2 transfer carried out by these species of sulphate-reducing bacteria does not appear to correlate with the distribution of genes coding for hydrogenase. Desulfovibrio vulgaris Groningen, which possesses only the gene for [NiFe] hydrogenase, oxidizes hydrogen in the presence of sulphate and produces some hydrogen during fermentation of pyruvate without electron acceptor. The hydrogenase of D. vulgaris was purified and characterized. It exhibits a molecular mass of 87 kDa and is composed of two different subunits (60 and 28 kDa). D. vulgaris hydrogenase contains 10.6 iron atoms, 0.9 nickel atom and 12 acid-labile sulphur atoms/molecule, and the absorption spectrum of the enzyme is characteristic of an iron-sulphur protein. Maximal H2 uptake and H2 evolution activities were 332 and 230 units/mg protein, respectively. D. vulgaris cells contain exclusively the [NiFe] hydrogenase, whatever the growth conditions, as shown by biochemical and immunological studies. Immunocytolocalization in ultrathin frozen sections of cells grown on lactate and sulphate, on H2 and sulphate and on pyruvate showed that the [NiFe] hydrogenase was located in the periplasmic space. Labelling was enhanced in cells grown on H2 and sulphate and on pyruvate. The results enable us to conclude that D. vulgaris Groningen contains a single hydrogenase of the [NiFe] type, located in the periplasmic space like that described for D. gigas. This enzyme appears to be involved in both H2 uptake and H2 production, depending on the growth conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号