首页 | 本学科首页   官方微博 | 高级检索  
     

基于fMRI瞬时功率的独立成分分析
引用本文:钟元,王惠南,郑罡,卢光明,张志强,刘一军. 基于fMRI瞬时功率的独立成分分析[J]. 中国图象图形学报, 2009, 14(10): 2010-2015
作者姓名:钟元  王惠南  郑罡  卢光明  张志强  刘一军
作者单位:钟元(南京航空航天大学自动化学院生物医学工程系,南京,210016;南京军区南京总医院医学影像科,南京,210002);王惠南,郑罡(南京航空航天大学自动化学院生物医学工程系,南京,210016);卢光明,张志强(南京军区南京总医院医学影像科,南京,210002);刘一军(佛罗里达大学精神病学和神经科学系,佛罗里达,美国,32610) 
基金项目:国家自然科学基金项目 
摘    要:独立成分分析(independent component analysis,ICA)采用一种统计隐变量模型,假设信号是由各信源线性叠加构成.为了解决功能磁共振数据(functional magnetic resonance imaging,fMRI)中由于信源非线性叠加造成的ICA检测误差,提出了基于瞬时功率的ICA方法.首先,由电流能量形式将fMRI数据推广为fMRI能量信号;然后,由血氧水平依赖(blood oxygenation level dependent,BOLD)信号与T2*信号的关系,给出了两种反映BOLD能量变化的瞬时功率fMRI信号;最后,采用空间ICA分析fMRI瞬时功率信号,得到与各脑部活跃区域能量相关的独立成分.从理论和仿真试验两个方面阐明了新方法的合理性和优越性,同时应用于实际癫痫fMRI数据,经与传统ICA方法比较,该方法能够在静息态下鲁棒地检测脑部能量异常区域.

关 键 词:独立成分分析  功能磁共振  血氧水平依赖  瞬时功率
收稿时间:2008-04-30
修稿时间:2008-07-30

Independent Component Analysis Based on Instantaneous Power of fMRI Data
ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun,ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun,ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun,ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun,ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun and ZHONG Yuan,WANG Hui-nan,ZHENG Gang,LU Guang-ming,ZHANG Zhi-qiang,LIU Yi-jun. Independent Component Analysis Based on Instantaneous Power of fMRI Data[J]. Journal of Image and Graphics, 2009, 14(10): 2010-2015
Authors:ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun  ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun  ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun  ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun  ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun  ZHONG Yuan  WANG Hui-nan  ZHENG Gang  LU Guang-ming  ZHANG Zhi-qiang  LIU Yi-jun
Affiliation:1) (Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016) 2) (Department of Medical Imaging, Nanjing Jinling Hospital, Nanjing 210002) 3) (Department of Psychiatry & Neuroscience, University of Florida
Abstract:In independent component analysis (ICA), a statistical latent variables model is employed to assume that the obtained data is a linear mixture of signals. To deal with the detection error when the nonlinear mixing signals of functional magnetic resonance imaging (fMRI) data are decomposed by means of ICA, a novel ICA method based on the instantaneous power of fMRI data is developed. Firstly, fMRI data are converted into its energy signals according to the energy form of electricity. Secondly, according to the relationship between blood oxygenation level dependent (BOLD) and T*2 signal, two types of instantaneous power of fMRI signals which represent the energy fluctuations of BOLD are proposed. Finally, based on the instantaneous power of fMRI data, the components correlated with the energies of brain activations are obtained by using a spatial ICA method. The effectiveness and advantage are elucidated through theoretical analyses and simulation tests, and it is also applied to vivo experimental epileptic fMRI, the results show that our method can robustly detect abnormal brain activities at resting state compared with the traditional ICA methods.
Keywords:independent component analysis (ICA)   functional magnetic resonance (fMRI)   blood oxygenation level dependent (BOLD)   instantaneous power
本文献已被 万方数据 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号