首页 | 本学科首页   官方微博 | 高级检索  
     


Quasi-Optimal Convergence Rate of an Adaptive Weakly Over-Penalized Interior Penalty Method
Authors:Luke Owens
Affiliation:1. Automated Trading Desk, 11 eWall Street, Mount Pleasant, SC, 29464, USA
Abstract:We analyze an adaptive discontinuous finite element method (ADFEM) for the weakly over-penalized symmetric interior penalty (WOPSIP) operator applied to symmetric positive definite second order elliptic boundary value problems. For first degree polynomials, we prove that the ADFEM is a contraction for the sum of the energy error and the scaled error estimator between two consecutive loops of the adaptive algorithm. After establishing this geometric decay, we define a suitable approximation class and prove that the adaptive WOPSIP method obeys a quasi-optimal rate of convergence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号