首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of linoleic,arachidonic and eicosapentaenoic acid supplementation on prostacyclin production in rats
Authors:Neil J. Mann  Glenda E. Warrick  Kerin O'Dea  Howard R. Knapp  Andrew J. Sinclair
Affiliation:(1) School of Nutrition and Public Health, Deakin University, 3217 Geelong, Victoria, Australia;(2) Department of Internal Medicine, University of Iowa Hospitals and Clinics, 52240 Iowa City, Iowa;(3) Department of Applied Biology, Royal Melbourne Institute of Technology, 3000 Melbourne, Victoria, Australia
Abstract:We examined the effect of dietary supplementation of linoleic acid (LA), arachidonic acid (AA) or eicosapentaenoic acid (EPA) to rats fed a diet low in linoleic acid onin vitro andin vivo production of prostacyclin. Male Sprague Dawley rats were fed a high-fat diet (50% energy as fat, 1.5% linoleic acid) for two weeks. Three of the groups were then supplemented orally with either 90 mg/d of LA, AA or EPA, all as the ethyl esters, for a further two weeks while remaining on the high-fat diet. Forty-eight hour urine samples were collected at the end of the second and fourth weeks.In vivo prostacyclin production was determined by a stable isotope dilution, gas chromatography/mass spectrometry assay for the major urinary metabolite of prostacyclins (2,3-dinor-6-keto-PGF or PGI2-M and Δ17-2-3-dinor-6-keto-PGF or PGI3-M).In vitro prostacyclin production was determined by radioimmunoassay of the stable metabolite (6-keto-PGF) following incubation of arterial tissue. Oral supplementation with AA resulted in a rise in plasma and aorta 20∶4n−6, and increasedin vitro prostacyclin and urinary PGI2-M production. EPA supplementation resulted in a rise in plasma and aorta 20∶5n−3 and 22∶5n−3, and a decline in plasma 20∶4n−6, but not in the aorta. In the EPA-supplemented group, thein vitro prostacyclin and the urinary PGI3-M increased, but urinary PGI2-M decreased. The increase inin vitro prostacyclin production in the EPA-supplemented rats was unexpected and without obvious explanation. Supplementation with LA had minimal effect on fatty acid composition of plasma or aorta and caused no change in prostacyclin production with either method. Thein vivo measure of prostacyclin production was positively correlated with aorta AA levels, and negatively correlated with aorta levels of EPA. There was a significant positive correlation between thein vitro production of prostacyclin and thein vivo production (as measured by the urinary prostacyclin metabolite level), despite the differences observed in the EPA-fed group. There was a high inter-animal variability in prostacyclin production using either method. These results indicate that dietary AA stimulates and dietary EPA reducesin vivo PGI2 production in the rat. An equivalent amount of dietary LA was without effect.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号