首页 | 本学科首页   官方微博 | 高级检索  
     


Study of anodization parameters effects on photoconductivity of porous silicon
Authors:H Khalili  R S Dariani  A MortezaAli  V Daadmehr  K Robbie
Affiliation:(1) Department of Physics, Alzahra University, Vanak, Tehran, 19938, Iran;(2) Department of Physics, Queen’s University, K7L 3N6 Kingston, ON, Canada
Abstract:We have prepared porous silicon by etching p-type crystalline silicon in different conditions such as: varying electrolyte concentration, current density, and etching time. The primary objective of this research is to develop a scientifically based technique for the measurement of photosensitivity. One such technique involves measuring the photoconductivity of the porous silicon under halogen lamp irradiation. Our photoconductivity measurements agree with photoluminescence measurements in previous work, and demonstrate the direct transition of porous silicon. Varied etching conditions change the peak of photoconductivity from 600 to 520 nm (from 2.13 eV to 2.4 eV) as the porosity of the layer gradually increases, and the photoconductivity band also becomes slightly more intense. The photoconductivity peak shift toward shorter wavelength was interpreted to be the result of band gap widening. We observe two distinct regimes in the time decay of photoconductivity, fast decay and steady state, that arise from the recombination process and electron–hole asymmetry near the Fermi surface. Experimental measurements of photoconductivity give useful information about the band gap, band structure, and variation of transport properties due to the micro-structural porosity created during the etching process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号