首页 | 本学科首页   官方微博 | 高级检索  
     


Dietary fat and fatty acids modulate cholesterol cholelithiasis in the hamster
Authors:Bertram I Cohen  Erwin H Mosbach  Nariman Ayyad  Shigeo Miki  Charles K McSherry
Affiliation:(1) Department of Surgery, Mount Sinai School of Medicine of the City University of New York, 10003 New York, New York;(2) Department of Surgery, Beth Israel Medical Center, First Avenue at 16th Street, 10003 New York, NY;(3) Present address: Department of Surgery, Kyushu University Faculty of Medicine, 812 Fukuoka, Japan
Abstract:We tested two hypotheses, i) whether the type and the amount of fat in the diet will affect the formation of cholesterol gallstones in the hamsters, and ii) whether palmitic acid, a major fatty acid component of butterfat, can act as a potentiator of cholesterol cholelithiasis in the hamster. Young, male golden Syrian hamsters (Sasco) were fed a semipurified diet containing casein, corn starch, cellulose and cholesterol (0.3%) to which various types and amounts of fat (butterfat, olive oil, menhaden oil, corn oil) were added. All diets contained 2% corn oil to supply essential fatty acids to the growing hamsters. No deaths or illness occurred during the experiment. Animals fed the semipurified diet plus 4% butterfat (group 1) had a gallstone incidence of 63%. Replacement of butterfat with either olive oil, corn oil or menhaden oil prevented the formation of cholesterol gallstones entirely (groups 2–4). When total butterfat was increased from 4% to 8% (group 8), the incidence of cholesterol gallstones increased to 80%. Substitution of 4% olive oil (group 5), corn oil (group 6), or menhaden oil (group 7) for the additional 4% butterfat significantly reduced gallstones to 35%, 45% and 30%, respectively. The replacement of 4% butterfat with 1.2% palmitic acid gave the highest incidence of cholesterol gallstones (95%). These results suggest that butterfat (and one of its components, palmitic acid) intensifies gallstone formation in this model whereas mono- and polyunsaturated fats act as inhibitors of cholesterol cholelithiasis. A fatty acid, possibly palmitic acid, appears to act as lithogen in our model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号