首页 | 本学科首页   官方微博 | 高级检索  
     


A multiscale mass transfer model for gas-solid riser flows: Part II—Sub-grid simulation of ozone decomposition
Authors:Weigang Dong  Wei Wang  Jinghai Li
Affiliation:a State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:This article is to test the EMMS-based multiscale mass transfer model through computational fluid dynamics (CFD) simulation of ozone decomposition in a circulating fluidized bed (CFB) reactor. Three modeling approaches, namely types A, B and C, are classified according to their drag coefficient closure and mass transfer equations. Simulation results show that the routine approach (type C) with assumption of homogeneous flow and concentration overestimates the ozone conversion rate, introduction of structure-dependent drag force will improve the model prediction (type B), while the best fit to experimental data is obtained by the multiscale mass transfer approach (type A), which takes into account the sub-grid heterogeneity of both flow and concentration. In general, multiscale behavior of mass transfer is more distinct especially for the dense riser flow. The fair agreement between our new model with literature data suggests a fresh paradigm for the CFB related reaction simulation.
Keywords:Mass transfer   Ozone decomposition   Multiscale   CFD   CFB   Simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号