首页 | 本学科首页   官方微博 | 高级检索  
     


Compositional distributions in multicomponent aggregation
Authors:K. Lee  T. Matsoukas
Affiliation:a Department of Chemical Engineering, Yonsei University, Seoul 120-749, Korea
b Pharmaceutical Commercialization Technology, Merck & Co., Inc., West Point, PA, USA
c Department of Chemical Engineering, Pennsylvania State University, 150 Fenske Laboratory, PA 16802, USA
Abstract:We consider the granulation of two components, a “solute” (the component of interest) and an excipient. We specifically focus on cases such that the aggregation kernel is independent of the composition of the aggregating granules. In this case, theory predicts that the distribution of components is a Gaussian function such that the mean concentration of solute in granules of a given size is equal to the overall mass fraction of solute in the system, and the variance is inversely proportional to the granule size. To study these effects, we perform numerical simulations of the bicomponent population balance equation using a constant aggregation kernel as well as a kernel based on the kinetic theory of granular flow (KTGF). If the solute and excipient are initially present in the same size (monodisperse initial conditions), both kernels produce identical distributions of components. With different initial conditions, the KTGF kernel leads to better mixing of components, manifested in the form of narrower compositional distributions. These behaviors are in agreement with the predictions of the theory of aggregative mixing. We further demonstrate that the overall mixedness of the system is controlled by the initial degree of segregation in the feed and show that the size distribution in the feed can be optimized to produce the narrowest possible distribution of components during granulation.
Keywords:Granulation   Multicomponent   Population balance   Monte Carlo
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号