首页 | 本学科首页   官方微博 | 高级检索  
     


A new homogenization method based on a simplified strain gradient elasticity theory
Authors:H M Ma  X -L Gao
Affiliation:1. Zodiac Aerospace Corporation, Engineered Arresting Systems, Logan, NJ, 08085, USA
2. Department of Mechanical Engineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
Abstract:Homogenization methods utilizing classical elasticity-based Eshelby tensors cannot capture the particle size effect experimentally observed in particle–matrix composites at the micron and nanometer scales. In this paper, a new homogenization method for predicting effective elastic properties of multiphase composites is developed using Eshelby tensors based on a simplified strain gradient elasticity theory (SSGET), which contains a material length scale parameter and can account for the size effect. Based on the strain energy equivalence, a homogeneous comparison material obeying the SSGET is constructed, and two sets of equations for determining an effective elastic stiffness tensor and an effective material length scale parameter for the composite are derived. By using Eshelby’s eigenstrain method and the Mori–Tanaka averaging scheme, the effective stiffness tensor based on the SSGET is analytically obtained, which depends not only on the volume fractions and shapes of the inhomogeneities (i.e., phases other than the matrix) but also on the inhomogeneity sizes, unlike what is predicted by the existing homogenization methods based on classical elasticity. To illustrate the newly developed homogenization method, sample cases are quantitatively studied for a two-phase composite filled with spherical, cylindrical, or ellipsoidal inhomogeneities (particles) using the averaged Eshelby tensors based on the SSGET that were derived earlier by the authors. Numerical results reveal that the particle size has a large influence on the effective Young’s moduli when the particles are sufficiently small. In addition, the results show that the composite becomes stiffer when the particles get smaller, thereby capturing the particle size effect.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号