首页 | 本学科首页   官方微博 | 高级检索  
     

基于流形学习的图像检索算法研究
引用本文:贺广南,杨育彬. 基于流形学习的图像检索算法研究[J]. 山东大学学报(工学版), 2010, 40(5): 129-136
作者姓名:贺广南  杨育彬
作者单位:南京大学软件新技术国家重点实验室, 江苏 南京 210093
基金项目:国家自然科学基金资助项目,江苏省自然科学基金创新人才(学术带头人)基金资助项目 
摘    要:流形学习以发现非线性高维数据的本质维数为目标,使其更适合数据分析和高维数据的降维。图像检索中“语义鸿沟”问题指的是高维数据空间与低维的语义子空间之间的鸿沟,虽然利用相关反馈机制可以缩小这种鸿沟提高准确率,但是因为反馈图像数目较少,图像特征维数相对较高,会容易产生维数灾难问题。流形学习的引入为解决这一难题带来了新的希望,因为通过流形学习的方法学习高维图像特征数据的本征维数用于图像检索,大大提高了检索性能。基于流形学习的图像检索算法都是半监督的流形学习,充分利用了反馈信息,学习查询图像的语义子空间,有效的实现了高维数据的降维。

关 键 词:图像检索  流形学习  相关反馈  数据降维  
收稿时间:2010-04-02

Image retrieval algorithms based on manifold learning
HE Guang-nan,YANG Yu-bin. Image retrieval algorithms based on manifold learning[J]. Journal of Shandong University of Technology, 2010, 40(5): 129-136
Authors:HE Guang-nan  YANG Yu-bin
Affiliation:State Key Laboratory for Novel Software Technology, Nanjing University,  Nanjing 210093, China
Abstract:The purpose of the manifold learning is to discover the intrinsic dimensions of nonlinear high-dimensional data, which makes it more suitable for data analysis and dimensional reduction. The gap between high-dimensional data space and low-dimensional semantic subspace forms the “semantic gap” problem in image retrieval. Although using relevance feedback mechanism can narrow down the gap and increase the retrieval accuracy, the limitations of relevance feedback and the high dimensionality of image features make it prone to the course of dimensionality. Manifold learning has brought promise for settling these problems. Using the learned intrinsic dimensions of high dimensional image feature data by manifold learning can considerably enhance retrieval performance. The image retrieval algorithms based on manifold learning all take semi supervised learning strategy. It makes the most of the feedback information to learn the semantic subspace of image, and reduces the high dimensionality effectively.
Keywords:image retrieval  manifold learning  relevance feedback  dimension reduction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号