首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于图论的加权聚类融合算法
引用本文:谢岳山,樊晓平,廖志芳,尹红练,罗 浩. 一种基于图论的加权聚类融合算法[J]. 计算机应用研究, 2013, 30(4): 1015-1016
作者姓名:谢岳山  樊晓平  廖志芳  尹红练  罗 浩
作者单位:1. 中南大学 a. 信息科学与工程学院; b. 软件学院, 长沙 410075; 2. 湖南省财政经济学院, 长沙 410205
基金项目:国家科技支撑项目计划资助项目(2012BAH08B01); 湖南省自然科学基金资助项目(12JJ3074)
摘    要:现有聚类融合算法对混合属性数据进行处理的效果不佳,主要是融合后的结果仍存在一定的分散性。为解决这个问题,提出了一种基于图论的加权聚类融合算法,通过对数据集聚类得到聚类成员后,利用所设计的融合函数对各个数据对象赋予权重,同时通过设置各个数据对间边的权重来确定数据之间的关系,得到带权最近邻图,再用图论的方法进行聚类。实验表明,该算法的聚类精度和稳定性优于其他聚类融合算法。

关 键 词:聚类融合  融合函数  混合属性  图论  加权

Weighted cluster fusion algorithm based on graph
XIE Yue-shan,FAN Xiao-ping,LIAO Zhi-fang,YIN Hong-lian,LUO Hao. Weighted cluster fusion algorithm based on graph[J]. Application Research of Computers, 2013, 30(4): 1015-1016
Authors:XIE Yue-shan  FAN Xiao-ping  LIAO Zhi-fang  YIN Hong-lian  LUO Hao
Affiliation:1. a. College of Information Science & Engineering, b. School of Software, Central South University, Changsha 410075, China; 2. Hunan University of Finance & Economics, Changsha 410205, China
Abstract:The results of the existing cluster fusion algorithms are usually not so good when they process the mixed attributes datas, the main reason is that the results of the algorithms are still dispersed. To solve this problem, this paper presented a new weighted cluster fusion algorithm based on graph theory. It first clustered the datasets and got cluster members, and then set weights to each data object with a proposed fusion function, and determined the relationship between the data-pair by setting weights to the edges between them, so it could get a weighted nearest neighbor graph. At last it did a last-clustering based on graph theory. Experiments show that the accuracy and stability of this cluster fusion algorithm is better than other clustering fusion algorithms.
Keywords:cluster fusion   fusing function   mixed attributes   graph theory   weighted
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号