首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的自适应混合神经网络盲分离算法
引用本文:吕淑平,祝 捷. 一种改进的自适应混合神经网络盲分离算法[J]. 计算机应用研究, 2013, 30(4): 1055-1057
作者姓名:吕淑平  祝 捷
作者单位:哈尔滨工程大学 自动化学院, 哈尔滨 150001
摘    要:传统的前馈神经网络盲源分离算法由于步长固定存在许多缺点,而基于Sigmoid函数的自适应步长算法虽然能够克服固定步长算法的缺陷,但其稳态性能较差。针对这个问题,提出一种改进的自适应步长算法,该算法可灵活地控制步长因子函数的形状,在近零点处变化较Sigmoid函数更加缓慢,性能更加优越;同时针对前馈神经网络的不足,在前馈神经网络结构中引入递归结构,利用改进的自适应步长算法控制学习速率。仿真分析表明该算法具有更快的分离速度和更加优越的分离效果。

关 键 词:盲信号分离  神经网络  自适应步长

Improved self-adaptive mixing neural network algorithm forblind source separation
LV Shu-ping,ZHU Jie. Improved self-adaptive mixing neural network algorithm forblind source separation[J]. Application Research of Computers, 2013, 30(4): 1055-1057
Authors:LV Shu-ping  ZHU Jie
Affiliation:College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract:The traditional feedforward neural network blind source separation algorithm is imperfect because of its fixed learning step. Although the self-adaptive step size algorithm based on Sigmoid-function can overcome the shortcomings of fixed step, its steady-state performance is poor. According to this problem, this paper proposed an improved self-adaptive step algorithm, which could flexibly control the shape of the step curve and the shape changed more slowly near the zeros than Sigmoid-function, the performance was more excellent. Secondly, considering the insufficient of feedforward neural network structure, this paper added a recursive structure into the whole model, adjusting learning step size with the improved self-adaptive step algorithm control algorithm. The simulation analysis shows that the algorithm has a faster separation speed and a better performance in convergence.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号