首页 | 本学科首页   官方微博 | 高级检索  
     


A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography
Authors:Moritz Robert L  Ji Hong  Schütz Frédéric  Connolly Lisa M  Kapp Eugene A  Speed Terence P  Simpson Richard J
Affiliation:Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research, Parkville, 3050, Victoria, Australia.
Abstract:Extensive prefractionation is now considered to be a necessary prerequisite for the comprehensive analysis of complex proteomes where the dynamic range of protein abundances can vary from approximately 10(6) for cells to approximately 10(10) for tissues such as blood. Here, we describe a high-resolution 2D protein separation system that uses a continuous free-flow electrophoresis (FFE) device to fractionate complex protein mixtures by solution-phase isoelectric focusing (IEF) into 96 well-defined pools, each separated by approximately 0.02-0.10 pH unit depending on the gradient created, followed by rapid (approximately 6 min per analysis) reversed-phase high-performance liquid chromatography (RP-HPLC) of each FFE pool. Fractionated proteins are readily visualized in a virtual 2D format using software that plots protein loci, pI in the first dimension and relative hydrophobicity (i.e., RP-HPLC retention time) in the second dimension. By coupling a diode-array detector in line with a multiwavelength fluorescence detector, separated proteins can be monitored in the RP-HPLC eluent by both UV absorbance and intrinsic fluorescence simultaneously from a single experiment. Triplicate analyses of standard proteins using a pH 3-10 gradient conducted over a 3-day period revealed a high system reproducibility with a SD of 0.57 (0.05 pH unit) within the FFE pools and 0.003 (0.18 s) for protein retention times in the second-dimension RP-HPLC step. In addition, we demonstrate that the FFE-IEF/RP-HPLC separation strategy can also be applied to complex mixtures of low molecular weight compounds such as peptides. With the facile ability to measure the pH of the isoelectric focused pools, peptide pI values can be estimated and used to qualify peptide identifications made using either MS/MS sequencing approaches or pI discriminated peptide mass fingerprinting. The calculated peak capacity of this 2D liquid-based FFE-IEF/RP-HPLC system is 6720.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号