首页 | 本学科首页   官方微博 | 高级检索  
     

国产玛咖中腺苷含量的高效液相色谱分析
引用本文:金文闻,陈雪敏,杨 飘,汪 巨,陈 慧,张之会,余龙江.国产玛咖中腺苷含量的高效液相色谱分析[J].食品科学,2016,37(12):148-151.
作者姓名:金文闻  陈雪敏  杨 飘  汪 巨  陈 慧  张之会  余龙江
作者单位:1.华中科技大学生命科学与技术学院,资源生物学与生物技术研究所,湖北 武汉 430074;2.武汉生物技术研究院, 湖北 武汉 430075;3.武昌首义学院,湖北 武汉 430064;4.丽江百岁坊生物科技开发有限公司,云南 丽江 674100
基金项目:华中科技大学校企重大合作项目(20130901);华中科技大学自主创新研究基金前沿探索项目(2015TS091);
国家基础科学人才培养基金项目(J1103514)
摘    要:目的:建立一种玛咖中腺苷的高效液相色谱(high performance liquid chromatography,HPLC)检测技术,并根据海拔、组织部位、干燥处理方法及表皮颜色差异对国产玛咖中腺苷含量进行分析。方法:用10%的甲醇溶液为提取溶剂提取玛咖中的腺苷,采用Waters SunfireTM C18(4.6 mm×250 mm,5 μm)色谱柱,以甲醇-水(10∶90,V/V)为流动相,流速1.00 mL/min,紫外检测波长260 nm,柱温26 ℃为条件进行腺苷的HPLC含量测定,并用该方法对多个玛咖样本进行了腺苷含量分析;结果:该方法显示腺苷含量在2.81~90 μg/mL范围内与峰面积呈良好的线性关系(R2为0.999 4),精密度较高(相对标准偏差(relative standard deviation,RSD)为0.728 3%)、重复性较好(RSD为1.745%),样品溶液24 h内的稳定性好(RSD为1.069%),平均加样回收率为99.76%(RSD为0.48%)。根据不同玛咖样品检测结果发现,腺苷含量受玛咖颜色和海拔的影响较大,而且干燥处理方法和组织部位影响更大。结论:HPLC法适合玛咖中腺苷成分的含量测定,可用于玛咖原料的质量控制

关 键 词:玛咖  腺苷  高效液相色谱  质量控制  

Determination of Adenosine in Domestic Maca by High Performance Liquid Chromatography
JIN Wenwen,CHEN Xuemin,YANG Piao,WANG Ju,CHEN Hui,ZHANG Zhihui,YU Longjiang.Determination of Adenosine in Domestic Maca by High Performance Liquid Chromatography[J].Food Science,2016,37(12):148-151.
Authors:JIN Wenwen  CHEN Xuemin  YANG Piao  WANG Ju  CHEN Hui  ZHANG Zhihui  YU Longjiang
Affiliation:1. Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Wuhan Institute of Biotechnology, Wuhan 430075, China; 3. Wuchang Shouyi University, Wuhan 430064, China; 4. Lijiang Baisuifang Biotechnology Development Co. Ltd., Lijiang 674100, China
Abstract:Objective: To establish a high performance liquid chromatography (HPLC) method for detecting the adenosine
content of Lepidium meyenii (maca) and utilize it to detect and the adenosine contents of domestic maca grown at different
altitudes, its different tissues, dried samples obtained using drying methods and maca varieties with different skin colors.
Methods: A 10% aqueous methanol solution was used as the extraction solvent to extract the adenosine in maca. The HPLC
analysis was performed using a Waters SunfireTM C18 column (4.6 mm × 250 mm, 5 μm). The mobile phase was CH3OH-H2O
(10:90, V/V) at a flow rate of 1.00 mL/min. The detection wavelength was 260 nm, and the column temperature was 26 ℃.
Multiple samples were analyzed under these chromatographic conditions. Results: The method had good linearity in the
concentration range of 2.81–90 μg/mL (R2=0.999 4), high precision and good reproducibility with relative standard deviation
(RSD) values of 0.728 3% and 1.745%, respectively. The sample solution was stable within 24 h (RSD = 1.069%), and
the average recovery of was 99.76% with a RSD value of 0.48% (n = 9). The analytical results of different maca samples
showed that different altitudes and differently colored maca varieties had great influences on the content of adenosine while
different drying methods and different tissues had more significant impacts. Conclusions: The HPLC method is suitable for
detecting the content of adenosine in maca for the quality control of maca materials.
Keywords:maca  adenosine  HPLC  quality control  
本文献已被 CNKI 等数据库收录!
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号