首页 | 本学科首页   官方微博 | 高级检索  
     


Transient behavior of time‐between‐failures of complex repairable systems
Authors:J Bert Keats  Stephen P Chambal
Abstract:It is well known for complex repairable systems (with as few as four components), regardless of the time‐to‐failure (TTF) distribution of each component, that the time‐between‐failures (TBFs) tends toward the exponential. This is a long‐term or ‘steady‐state’ property. Aware of this property, many of those modeling such systems tend to base spares provisioning, maintenance personnel availability and other decisions on an exponential TBFs distribution. Such a policy may suffer serious drawbacks. A non‐homogeneous Poisson process (NHPP) accounts for these intervals for some time prior to ‘steady‐state’. Using computer simulation, the nature of transient TBF behavior is examined. The number of system failures until the exponential TBF assumption is valid is of particular interest. We show, using a number of system configurations and failure and repair distributions, that the transient behavior quickly drives the TBF distribution to the exponential. We feel comfortable with achieving exponential results for the TBF with 30 system failures. This number may be smaller for configurations with more components. However, at this point, we recommend 30 as the systems failure threshold for using the exponential assumption. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:time between failures  time to failure  exponential density  non‐homogeneous Poisson process  transient behavior
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号