首页 | 本学科首页   官方微博 | 高级检索  
     


Handling uncertainties of robot manipulators and active vision by constraint propagation
Authors:Christopher C Yang  Frank W Ciarallo  Michael M Marefat
Abstract:Joint errors are inevitable in robot manipulation. These uncertainties propagate to give rise to translational and orientational errors in the position and orientation of the robot end‐effector. The displacement of the active vision head mounted on the robot end‐effector produces distortion of the projected object on the image. Upon active visual inspection, the observed dimension of a mechanical part is given dimension by the measurement on the projected edge segment on the image. The difference between the observed dimension and the actual dimension is the displacement error in active vision. For different motion of the active vision head, the resulting displacement errors are different. Given the uncertainties of the robot manipulator's joint errors, constraint propagation can be employed to assign the motion of the active sensor in order to satisfy the tolerance of the displacement errors for inspection. In this article, we define the constraint consistency and network satisfaction in the constraint network for the problem of displacement errors in active vision. A constraint network is a network where the nodes represent variables, or constraints, and the arcs represent the relationships between the output variables and the input variables of the constraints. In the displacement errors problem, the tolerance of the displacement errors and the translational and orientational errors of robot manipulators have interval values while the sensor motion has real values. Constraint propagation is developed to propagate the tolerance of displacement errors in the hierarchical interval constraint network in order to find the feasible robot motion. © 2002 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号