首页 | 本学科首页   官方微博 | 高级检索  
     

融合注意力机制的金属缺陷图像分割方法
引用本文:赵鹤,杨晓洪,杨奇,尹丽琼. 融合注意力机制的金属缺陷图像分割方法[J]. 光电子.激光, 2021, 32(4): 403-408
作者姓名:赵鹤  杨晓洪  杨奇  尹丽琼
作者单位:昆明理工大学信息工程与自动化学院,云南昆明650500;武钢集团昆明钢铁股份有限公司安宁公司,云南昆明650302
基金项目:国家重点研发计划(2017YFB0306405)、云南省重点研发计划(2018BA070)和国家自然科学基 金(61364008)资助项目 (1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.武钢集团昆明钢铁股份有限公司安宁公司,云南 昆明 650302)
摘    要:由于金属表面缺陷图像的特性,有效精确分割是图像处理任务中的一大挑战.为了获得缺陷的类型、大小及位置信息,本文提出一种融合注意力机制的金属缺陷图像分割网络.该网络分为两条路径,语义信息路径主要由残差块构成的卷积网络获得特征图,采样过程中分步融合注意力机制以增强特征与背景对比度.旁路路径设计注意力机制模块获得位置信息的权重...

关 键 词:语义分割  膨胀卷积  注意力机制  特征融合
收稿时间:2020-12-02

Metal defect image segmentation algorithm combined with attention mechanism
ZHAO He,YANG Xiao-hong,YANG Qi and YIN Li-qiong. Metal defect image segmentation algorithm combined with attention mechanism[J]. Journal of Optoelectronics·laser, 2021, 32(4): 403-408
Authors:ZHAO He  YANG Xiao-hong  YANG Qi  YIN Li-qiong
Affiliation:Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Yunnan Kunming,650500,China,Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Yunnan Kunming,650500,China,WISCO Group Kunming Iron&Stee l Co,Ltd,Anning Company,Yunnan Kunming,650302,China and WISCO Group Kunming Iron&Stee l Co,Ltd,Anning Company,Yunnan Kunming,650302,China
Abstract:Due to the characteristics of metal surface defect images,effective an d accurate segmentation is a major challenge in image processing tasks.In order to obtain defect type,size and location information,this paper proposes a met al defect image segmentation network that incorporates attention mechanism.The network is divided into two paths.The semantic information path is mainly compo sed of a convolutional network composed of residual blocks to obtain a feature m ap.During the sampling process,the attention mechanism is integrated step by s tep to enhance the contrast between the feature and the background.The side roa d path design attention mechanism module obtains the weight map of the location information,and then combines the feature map of the same size with the weight map,and combines multi-scale features through the spatial pyramid.Experimenta l results show that the algorithm can improve the segmentation accuracy of metal surface defect images.
Keywords:semantic segmentation   dilated convolution   attention mechanism   feature fusion
本文献已被 万方数据 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号