首页 | 本学科首页   官方微博 | 高级检索  
     


Testing the hypothesis of a general linear model using nonparametric regression estimation
Authors:W. González-Manteiga  R. Cao
Affiliation:(1) Facultad de Matemáticas, Universidad de Santiago de Compostela, 15771 Santiago de Compostela, Spain
Abstract:Summary Given the modelY i =m i )+ɛi,whereE(ɛ i) =0,X i Ci=1, ...,n, andC is ap-dimensional compact set, we have designed a new method for testing the hypothesis that the regression function follows a general linear model,m(·) ∈ {m θ(·) =A t (·)θ}θ∈Θ⊂ℛq , withA a function from p to q. The statistic, denoted ΔASE, used fortesting the given hypothesis is defined to be the difference between the average squared errors (ASE) associated with the non-parametric estimator 
$$hat m$$
ofm and the minimum distance parametric estimator 
$$m_{hat theta } $$
ofm. The asymptotic normality of both ΔASE and the minimum distance estimators is proved under general conditions. Alternative bootstrap versions of ΔASE are also considered.
Keywords:General linear model  Nonparametric regression estimation  Average squared error  Bootstrap
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号