首页 | 本学科首页   官方微博 | 高级检索  
     

基于NFI-CMAC的机器人分布式智能控制
引用本文:王俊松,田库,刘玉敏,徐宁寿. 基于NFI-CMAC的机器人分布式智能控制[J]. 武汉大学学报(工学版), 2004, 37(6): 59-61
作者姓名:王俊松  田库  刘玉敏  徐宁寿
作者单位:1. 天津职业技术师范学院自动化系,天津,300222
2. 北京工业大学自动化系,北京,100022
基金项目:国家自然科学基金(60125310),教育部科学技术重点项目(02012).
摘    要:基于牛顿前向插值公式提出一种对多维函数可实现任意阶逼近的新型CMAC神经网络———NFI CMAC,详细讨论了其插值算法、训练规则及寻址机制.与传统CMAC相比,NFI CMAC具有学习精度高、学习速度快及占用内存单元少等优点.基于NFI CMAC设计了一种高性能的机器人轨迹跟踪分布式智能控制方案,仿真研究表明了该方案的可行性与有效性.

关 键 词:牛顿前向插值  神经网络  机器人  智能控制
文章编号:1671-8844(2004)06-059-03
修稿时间:2004-05-11

Manipulator distributed intelligent control based on NFI-CMAC
WANG Jun-song,TIAN Ku,LIU Yu-min,XU Ning-shou. Manipulator distributed intelligent control based on NFI-CMAC[J]. Engineering Journal of Wuhan University, 2004, 37(6): 59-61
Authors:WANG Jun-song  TIAN Ku  LIU Yu-min  XU Ning-shou
Affiliation:WANG Jun-song~1,TIAN Ku~1,LIU Yu-min~1,XU Ning-shou~2
Abstract:This paper proposes a novel high-order CMAC_type neural network via the Newton's forward interpolation (NFI-CMAC), which is capable of implementing error-free approximations to multi-variable polynomial functions of arbitrary order, including interpolation algorithm and training algorithm. Compared with the conventional CMAC-type AMS, the proposed one has advantages such as high-precision of learning, much smaller memory requirement without the data-collision problem. Based on the proposed neural network, the authors design a type of simple and truly general robotic manipulator intelligent controller; the simulation results verify that the control strategy is effective.
Keywords:Newton's forward interpolation  neural network  robot  intelligent control
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号