首页 | 本学科首页   官方微博 | 高级检索  
     


Study on axial-feed mirror finish grinding of hard and brittle materials in relation to micron-scale grain protrusion parameters
Authors:J. Xie  Y.X. Lu
Affiliation:School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Abstract:An axial-feed mirror finish grinding of hard and brittle materials is proposed by controlling grain protrusion parameters. In this grinding, the grinding wheel feed is along the wheel axial direction rather than in the traditional wheel cutting direction. The objective is to understand how micron-scale grain protrusion parameters influence ductile-mode grinding and ultimately to realize efficient mirror finish grinding using a coarse diamond grinding wheel. In this study, the grain tip truncation (GT-truncation) was performed after dressing to improve grain protrusion topography. First, a formation model of axial-feed ground surface was constructed to analyze the effect of grain protrusion parameters and grinding parameters on the critical cutting depth transferred from brittle-mode removal to ductile-mode removal; then GC dressing and GT-truncation of #180 diamond grinding wheel were experimentally performed to investigate surface roughness and ductile-mode grinding behavior with reference to grinding parameters and grain protrusion parameters; finally, a truncated coarser #60 diamond grinding wheel was employed for mirror finish grinding to observe active grain number and grain protrusion angle. Theoretical analysis shows that this ductile-mode grinding is dominated by active grain number, active grain protrusion angle, wheel rotating speed and axial-feed speed, but it does not depend on the depth of cut assumed to be less than the grain protrusion height. Experimental results indicate that the GT-truncation may increase active grain number and grain protrusion angle for ductile-mode grinding when the axial-feed speed decreases to some extent. Moreover, the micro tip radius of diamond grain also influences the ground surface. It is confirmed that by increasing active grain number and grain protrusion angle synchronously, a truncated #60 diamond grinding wheel can be applied for efficient mirror finish grinding of the SiC ceramic plate at the axial-feed speed of 50 mm/min and the tool path interval of 0.1 mm.
Keywords:Mirror finish grinding   Hard and brittle material   Diamond grinding wheel   Grain protrusion parameter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号