首页 | 本学科首页   官方微博 | 高级检索  
     

模糊联想记忆网络的增强学习算法
引用本文:舒桂清,肖平. 模糊联想记忆网络的增强学习算法[J]. 中国图象图形学报, 2003, 8(1): 84-90
作者姓名:舒桂清  肖平
作者单位:广东省科技干部学院计算机与电子工程系 广州510640(舒桂清),华南理工大学电子与通信工程系 广州510641(肖平)
摘    要:针对 Kosko提出的最大最小模糊联想记忆网络存在的问题 ,通过对这种网络连接权学习规则的改进 ,给出了另一种权重学习规则 ,即把 Kosko的前馈模糊联想记忆模型发展成为模糊双向联想记忆模型 ,并由此给出了模糊快速增强学习算法 ,该算法能存储任意给定的多值训练模式对集 .其中对于存储二值模式对集 ,由于其连接权值取值 0或 1,因而该算法易于硬件电路和光学实现 .实验结果表明 ,模糊快速增强学习算法是行之有效的 .

关 键 词:模糊联想记忆  增强学习算法  连接权矩阵
文章编号:1006-8961(2003)01-0084-07
修稿时间:2001-12-25

An Augmentation Learning Algorithm of Fuzzy Associative Memory
SHU Gui-qing and Xiao Ping. An Augmentation Learning Algorithm of Fuzzy Associative Memory[J]. Journal of Image and Graphics, 2003, 8(1): 84-90
Authors:SHU Gui-qing and Xiao Ping
Abstract:This paper gives a new learning rule about the formation of weights for two-layer max-min feedforward fuzzy associative memory (FAM) network proposed by Kosko . Based on the new rule,The feedforward FAM model is developed into a fuzzy bidirectional associative memory (BAM) model,and a fuzzy quick augmentation algorithm is also proposed,Its stability and tolerance for the BAM model are also analyzed. From the analysis, an interesting result which can store an arbitrary given multi-value patterns is obtained. When used to store binary values, The weights for BAM model take binary too, 0 or 1.So it is suitable for the VLSI and optical implementation. In order to make a comparision, binary based sample patterns have adoped. A larger number of simulation results show the advantages of a less number of weighted value,or the simple implementation, by comparing with the existing learning algorithm,such as binary based Hoperfield dummy augmentation and MBDS augmentation algorithms. On the other hand, the fuzzy quick augmentation algirithm has the merit of the simpler computation and faster convergence.
Keywords:Fuzzy associative memory   Augmentation learning algorithm   Connection weights
本文献已被 CNKI 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号