首页 | 本学科首页   官方微博 | 高级检索  
     


Performance analysis of a greedy algorithm for inferring Boolean functions
Authors:Daiji Fukagawa  Tatsuya Akutsu
Affiliation:a Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
b Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
Abstract:We analyzed average case performance of a known greedy algorithm for inference of a Boolean function from positive and negative examples, and gave a proof to an experimental conjecture that the greedy algorithm works optimally with high probability if both input data and the underlying function are generated uniformly at random.
Keywords:Analysis of algorithms   Unbalanced function   Uniform distribution   Machine learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号